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Comparison of critical properties in binary and ternary liquid mixtures
using light scattering techniques

O. Müller and J. Winkelmann*
Institut für Physikalische Chemie, Universita¨t Halle-Wittenberg, Geusaer Strasse, D-06217 Merseburg, Germany

~Received 24 October 1997; revised manuscript received 15 October 1998!

In this paper we present results of light scattering and viscosity measurements of both binary and ternary
mixtures. The investigations are carried out for two liquid systems: aniline1cyclohexane and
aniline1cyclohexane1p-xylene. Correlation lengths, generalized osmotic susceptibilities, mutual diffusion
coefficients, and viscosities are obtained for a range of compositions and temperatures where the systems
becomes nearly critical. We investigate the shift in critical exponents, the validity of power laws, and the role
of corrections to scaling when we change from a binary critical point to a ternary plait point. It is shown that
critical exponents of the ternary mixture, obtained from power-law fitting, are apparently larger than those of
a binary mixture. A possible influence of corrections to scaling on the critical behavior of a ternary mixture is
discussed.@S1063-651X~99!04502-X#

PACS number~s!: 05.70.Jk
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I. INTRODUCTION

Static and dynamic light scattering measurements h
proved to be powerful techniques for studying critical ph
nomena in fluid phases. The angle-dependent intensity
the spectrum of scattered light can be easily related to
magnitude and the dynamics of critical fluctuations@1,2#.
Many papers published in recent decades are concerned
the analysis of these long-range correlations in binary s
tems in the neighborhood of their plait points~e.g., the
aniline1cyclohexane system@3–6#!. It could be shown that
theoretical concepts such as renormalization group or mo
mode coupling theory are in impressive agreement with
results of measurements in binary fluid mixtures. In a thr
component system one could expect that the plait p
should behave analogously to the critical mixing point o
two-component system. However, there is in fact an imp
tant difference in the case of a ternary plait point: Und
constant pressure it is a part of a critical line on a coexiste
surface. There are only a few papers that deal with the c
cal behavior in three component critical fluids. Bak a
Goldburg@7# observed no change in the critical exponent
osmotic susceptibility when they add up to 6% phospho
acid to a critical mixture of water and phenol. In contrast
this result, a mixture of brombenzene, water, and acet
gave a critical exponent that was larger than the binary
@8#. Fisher and Scesney explained this trend by renormal
tion of critical exponents from analysis of the free-electr
Ising model@9,10#, e.g.,
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wheren is the critical exponent of the correlations length
concentration fluctuationsj, g denotes the exponent of th
generalized osmotic susceptibilityCx, anda is the heat ca-
pacity exponent above the plait point. The subscriptx de-
notes that this quantity is an exponent of a ternary plait po

In an extended investigation of the ethanol-wat
chloroform system Chu and Lin@11# found larger exponents
for the correlation length and the osmotic susceptibility th
expected by critical exponent renormalization. Because
this situation it becomes necessary to study the nature
critical anomalies in three-component systems. The existe
of a critical line leads to the assumption that in a terna
mixture values of critical exponents may be found in a c
tain range instead of being fixed as in a binary mixture. T
exponents of the binary system should be a limit to t
range.

In the first step of this systematic study we intend to p
form a direct comparison of a binary and a ternary flu
system. These systems should differ only by the third co
ponent. For this purpose we measured a critical mixture
aniline and cyclohexane and afterward we performed exa
the same measurements with a critical ternary mixture
aniline, cyclohexane, andp-xylene. The refractive indexnD
of p-xylene corresponds to the refractive index of the bina
critical mixture. So the presence ofp-xylene has no influence
on optical properties of the system.

II. THEORY

A. Intensity of scattered light

Light scattering can be observed whenever there are l
fluctuations in the dielectric constant« of the medium. The
intensity I s of the scattered light is given by

I s~q!5A sin2~F!^ud«~q!u2& ~2!

from the static point of view. In this equationA denotes a
constant determined by the wavelengthl of incident beam.
F is the phase shift between the incident and the scatte
beam, andq is the so-called wave vector. It is defined by

d.
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PRE 59 2027COMPARISON OF CRITICAL PROPERTIES IN BINARY . . .
q54p
nD

l4 sinS u

2D , ~3!

with the scattering angleu and the refractive indexnD . In a
fluid mixture the local fluctuations of the dielectric consta
are a function of fluctuations in pressurep, temperatureT,
and concentrationc. Under the given conditions the conce
tration fluctuations are doubtlessly much more essential t
the others. So we can formulate the scattered intensity a

I s~q!5A sin2S ]e

]cD
p,T

2

^udc~q!u2&. ~4!

The quantity^udc(q)u2&, describing the concentration fluc
tuations in space, is the static structure factorS(q). It is
strongly connected to the space autocorrelation function
the concentration fluctuationsG(r ),

S~q!5VE
V
eiqrG~r !q dr, ~5!

whereV denotes the scattering volume. Within the Ornste
Zernike theory@12# the correlation function of concentratio
fluctuations is described by

G~r !}
exp~2r /j!

r
. ~6!

A comparison to the static structure factor from the fluctu
tion theory of Einstein and Smoluchowski@13# leads to a
description of the static structure factor

S~q!5^udc~q!u2&5kBTc2
xT

11q2j2 , ~7!

wherexT is the osmotic susceptibility,j denotes the corre
lation length of concentration fluctuations, andkB is the
Boltzmann constant. With respect to Eq.~4!, the intensity of
scattered light becomes

I s~q!5
CxTT

11q2j2 , ~8!

whereC is a temperature-independent factor containing
macroscopic concentration, the concentration dependenc
«, and kB . This equation leads to the Ornstein-Zernik
Debye~OZD! method. Since this procedure does not ena
us to evaluate the quantityC, we cannot calculate the os
motic susceptibilityxT itself. Instead we obtain a generalize
osmotic susceptibilityCxT .

Equation~6! is correct only for ranges ofr that are not too
small. Because of the divergence of the static structure fa
in the neighborhood of the critical point, a small numberh
was introduced by Fisher describing a critical singularity
the correlation function~6!. So we can write@14#

G~r !}
exp~2r /j!

r 12h . ~9!

According to renormalization group analysis, one must
pect h'0.06 for the three-dimensional~3D! Ising model.
Experimental investigations gave values betweenh50.065
t
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@15# and 0.086@16#. However, for ternary mixtures it is no
obvious whether this exponent has to be renormalized
way like Eq. ~1!. If we consider the static structure facto
exponent, Eq.~8! must be modified to yield

I s~q!5
CxTT

~11q2j2!12h/2 . ~10!

Because there is no theoretical limit defined for the ran
of criticality we cannot exclude that corrections to scali
become evident even in the vicinity of the critical poin
These corrections modify the power laws, which are de
mined by a scaling hypothesis. However, approaching
critical point, the amount of these corrections to scali
should decrease and finally disappear.

By application of the renormalization group theory We
ner proposed a description of the critical singularity with
an extended range of temperature. For the correlation len
he obtained

j~T!5j0e2n~11j1e0.51j2e1.01j3e1.5!,
~11!

e5
T2Tc

Tc
.

If we disturb a binary critical mixture by adding a third com
ponent, we could imagine that in this case the correction
scaling are applicable even in the critical range. In a bin
mixture, however, in the temperature rangeT2Tc,1.2 K,
the contribution of the Wegner termsj1 ,...,j3 should be
close to zero.

B. Scattered light spectrum

Following the theories of Landau and Placzek@17#, the
linewidth of the central Rayleigh peak in the spectrum
scattered light can be expressed byG5DTq2 in a pure fluid,
where DT is the thermal diffusion coefficient, or byG
5D12q

2 in case of a fluid mixture. HereD12 denotes the
mutual diffusion coefficient. However, this is valid only fa
from any critical singularity. In the range of criticality w
will obtain a strong power-law dependence that can be w
ten asG(q)5Aqz with a universal value of the exponentz
53.066.

As a result of the mode-mode coupling theory by K
wasaki and Swift@18–20#, we identify the linewidth for both
singular and regular behavior of a fluid mixture

G5D12q
2V~x!5

RkBT

6phj
q2V0~x!~11b2x2!zh/2. ~12!

In this equationR denotes a dynamic ratio of amplitude
The scaling variable is defined byx5qj. The dynamic vis-
cosity ish. The constantb50.55 is an empirical paramete
Equation~12! shows that the dynamic scaling functionV(x)
can be divided into two parts:~i! the universal Kawasak
function

V0~x!5
3

4x2 F11x21S x32
1

xDarctan~x!G ~13!
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2028 PRE 59O. MÜLLER AND J. WINKELMANN
and ~ii ! a correction term for background viscosity b
Bustyn, Sengers, Bhattacharjee, and Ferrell with the crit
exponent of viscosityzh , which is theoretically given by the
dynamic scaling lawz531zh .

It is common practice to consider some special case
Eq. ~12!.

~i! In the hydrodynamic range, for a very small scali
variable (qj!1) it follows that

G5Dq2, ~14!

where no enlargement of the correlation length is obtain
~ii ! In a cross range withqj'1, the so-called nonloca

hydrodynamic range, we have to consider a correction for
growth of cooperative regions, so we write

G5DS 11
3

5
q2j2Dq2. ~15!

~iii ! Approaching the critical point (qj@1) the exponent
of q increases to the theoretical value of 3.066. One
obtain a linewith described by

G5D
3p

8j11zh
qz5

RkBT

16hBQ0
zh

qz, ~16!

where hB denotes the background viscosity, which is
nearly constant regular part of the viscosity, andQ0 is the
critical amplitude of viscosity depending on the system.

C. Viscosity and background correction to linewidth

For a test of dynamic scalings laws as well as for
background correction to the critical linewidth the measu
ment of viscosity data is necessary. The temperature de
dence of viscosity above the plait point is described by

h5hB~Q0j0!zhS T2Tc

Tc
D 2zhn

. ~17!

The noncritical part of viscosity is given by the Vogel equ
tion

hB5AeB/~T2C!, ~18!

where A, B, and C are temperature-independent constan
They will be determined by viscosity measurements in
temperature range far from critical singularities. With th
back-ground viscosity we can calculate the background l
width of the scattered light according to Rouch and Ch
@21#.

GB50.038
kBT

hBj
q2

11q2j2

Q0j
. ~19!

This background linewith is used for a correction of the lin
width determined from the time autocorrelation function.
al
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III. EXPERIMENT

A. Sample preparation

1. Glassware cleaning

All light scattering cells, syringes, Erlenmeyer flasks, a
viscosimeters were immersed in a mixture of water, sodi
hydroxide, and hydrogen peroxide for several days to
move any organic impurities. Then the glassware was rin
with distilled water and subjected to ultrasonic vibrations
1 h. Hot water steam was used to remove all remaining d
particles from inside of the flasks and cells. The clean
glassware was carefully dried at a temperature of 120
under vacuum and cooled to room temperature after 8 h un-
der a nitrogen atmosphere. All glassware was sealed w
Parafilm before storing.

2. Materials

Certified ACS spectranalyzed cyclohexane~99.5 mole %!
andp-xylene ~99.2 mole %! were used without further puri
fication with the exception of removing traces of water. Bo
substances were refluxed with calcium hydride and distill

The aniline was distilled at 60 °C under reduced press
using a column 2000 mm in length and dynamically dri
with Zeosorb 4A. After repeated rectification the anilin
fractions were multiple frozen and evacuated. The substan
were stored under an argon atmosphere. A water analysi
Karl-Fischer titration gave less than 12 ppm water in t
aniline fractions.

3. Sample preparation

To determine the critical composition coexistence d
from Dobbertin@6# (aniline1cyclohexan) and Anglescu an
Zinca (aniline1cyclohexane1p-xylene) @22# were used. For
each plait point we prepared six mixtures with their targ
compositions. Because of weighing uncertainties, these c
positions were slightly different. To avoid the influence
dust the mixtures were filtered through Teflon membra
~with a 0.2mm pore width! into the cylindrical sample cells
To exclude oxygen and water from the air all operatio
were carried out under an argon atmosphere. For each sy
six sample cells were flame sealed to determine the real
composition temperatureqc

vis . All prepared samples were
tested by the volume equivalence criterion. The sample
meets best this criterion was defined to be the criti
one. The binary critical mixture was aniline1cyclohexane
with 44.58 mole % aniline and a critical decompositio
temperature qc

vis529.648 °C. The ternary one wa
aniline1cyclohexane1p-xylene with 44.42 mole % aniline
49.59 mole % cyclohexane, andqc

vis517.576 °C.

B. Light scattering apparatus

All described light scattering measurements~static and
dynamic! are carried out in a commercial apparatus shown
Fig. 1, which is mounted on a vibration-damped table. As
light source we used a NEC-type He-Ne gas laser of ab
35 mW at 632.8 nm. Because of the very high scattered l
intensity at near critical states the incident beam intensity
been reduced by a liquid crystal attenuator. After passing
attenuator the incident intensity and beam position were a
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PRE 59 2029COMPARISON OF CRITICAL PROPERTIES IN BINARY . . .
lyzed using a quadrant-diode coupled in with a beam divi
plate. The sample cell was positioned in the center of
scattering cell, which is filled with toluene. To analyze t
scattered light a photomultiplier tube was mounted on a
niometer, which allows us to scan a range of angles from
up to 152° with an accuracy of better than 0.01°. A fa
photon count correlator platine ALV-5000/Fast was co
nected directly with the photomultiplier and enabled us
obtain lag times down to 13 ns for a dynamic analysis
scattered light.

To determine the quality of optical adjustment, test m
surements were carried out with pure toluene as a scatte
medium showing no angle dependence of the scattering
tensity. During the whole measurement period the angle
pendence of scattered light intensity was less than 3%.

We could retain60.002 K temperature control over ex
tended periods of time by using a single Julabo-type FP
thermostat with circulating water as the medium. Tempe
ture measurements in the scattering cell were carried
with a Pt-100 resistor thermometer and a thermistor that
a sensitivity of better than 0.2 mK.

C. Scattered light measurement

After centrifugation to avoid dust particles in the scatt
ing volume, the sample cell was positioned into the appa
tus. It was allowed to come to thermal equilibrium by o
serving the scattered intensity over a time range of about
h.

Both static and dynamic measurements of scattered l
were done simultaneously at the same apparatus. In
binary and ternary samples we measured intensities a
angles between 40° and 140° and 117 temperatures
range fromT2Tc50.02 to 1.2 K. The sampling time at eac
angle and temperature was 10 s. This procedure was repe
ten times to get 100 s of total measurement time interrup
by 5 s of theautoscaling procedure between each samp
period.

The measured scattering intensityI s was corrected for
scattering volume, intensity fluctuations, dark counts, e

FIG. 1. Light scattering apparatus:~1! He-Ne laser, (2a) – (2d)
mirrors, (3a) – (3d) apertures,~4! beam attenuator,~5! beam di-
vider plate, (6a) – (6c) bispherical lenses,~7! probe holder,~8!
thermostated measurement cell,~9! goniometer,~10! quadrant pho-
todiodes, and~11! photomultiplier tube.
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according to the methods proposed by Kao and Chu@23#. To
extract the effect of criticality from our measurements w
applied the following procedure for background correctio
We used the same mixture and measured the intensit
scattered light at 35 K above the critical temperature. At t
high temperature no critical effects are expected and thisI B
is taken for the background correction. The corrected int
sity is denoted byI sc.

D. Viscosimetry

The behavior of a near critical mixture is very sensitive
slight changes in its composition. Since a common Ubbe
hde viscosimeter is an open system, we did not obtain r
able measurements. Instead we modified the viscosimete
that it could be flame sealed. To move the substance in
upper part of the viscosimeter it was mounted on a plate
enables a vertical rotation. This apparatus was placed
water bath with a volume of about 451. By using a Julab
type thermostat FP25 we achieved a constant tempera
with fluctuations less than60.005 K over a time range of 24
h. The rotating plate was driven by an external motor
order to avoid any influence on the bath temperature.

The related density needed to calculate the dynamic
cosity from flow times was measured with a vibration de
simeter ~Fa. A. Paar!, which uses the density-depende
damping of aU-shaped vibrating tube containing the samp
This apparatus must be calibrated by well known dens
standards. We used the pure substances of aniline and c
hexane as standards. A temperature constant of a
60.002 K was achieved with the help of another Julabo-ty
thermostat FP40.

IV. DATA ANALYSIS

Since the temperature dependence of the observed p
erties in the critical range is strongly nonlinear, the applic
tion of a special powerful least-squares fitting procedure
came essential. Instead of a standard implementation of
Marquard-Levenberg algorithm we applied a special pro
dure of Golub and Pereyra@24# and Osborne@25#. They de-
signed an algorithm to solve problems of a type of multip
nonlinear regression with a model functionYcalc that is sepa-
rable. The program attempts to compute a weighted le
squares fit to a separable function

Ycalc~a,b,x!5(
j 51

L

b jF j~a,x!1F j 11~a,x!, ~20!

which is a linear combination of nonlinear functionsF j . It
determinesL linear parametersb j and the vector of nonlin-
ear parametersa by minimizing the norm of residualsr

ur u25(
i 51

N

Wi@Yi2Ycalc~a,b,xi !#
2, ~21!

where Wi denotes the weight of each point (Yi ,xi). This
weight is given by the reciprocal of the square of the unc
tainity for that measured point. The residualr is modified to
incorporate, for any fixeda, the optimal linear parameter
for that a. It is then possible to minimize only the nonlinea
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2030 PRE 59O. MÜLLER AND J. WINKELMANN
parameters. After the optimal values of thea have been de-
termined, the linear parameters can be recovered by lin
least-squares techniques@24#. This is achieved by a modifi
cation~see@25#! of the Marquard-Levenberg procedure usi
stable orthogonal Householder reflections on a modifica
of the Jacobian.

The main advantage of this procedure over other le
squares programs is that no initial guesses are needed fo
linear parameters. Not only does this make it easier to
but it often leads to faster convergence. We used this p
gram codeVARPRO for the determination of the critical am
plitudes, exponents, and critical temperatures as well as
the calculation of the Wegner coefficients. Here we es
cially benefited from the fact that the objective functionY is
separable. We treated the critical exponent as a nonlin
parameter and the Wegner coefficients as linear parame

V. RESULTS AND DISCUSSION

A. Static properties

1. Determination of correlation lengths and osmotic
susceptibilities

According to Eq.~7!, we used the common procedure b
Ornstein, Zernike, and Debye

FIG. 2. Correlation length of the critical concentration fluctu
tions j vs temperature of the binary~s! and ternary~d! mixture.
~a! Correlation lengthj vs T2Tc

vis , whereTc
vis is the visually ob-

tained critical temperature.~b! A log-log plot of the correlation
lengths vs the reduced temperature. This corresponds to the p
law approximation.
ar
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the
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I BT

I sc~q!
5

1

CxT
1

j2

CxT
q2 ~22!

to determine the generalized osmotic susceptibility and
correlation length from the corrected scattering intensity a
given temperature. Using this method we calculated the s
ceptibility CxT(T) from the scattered intensity at zero ang
and the correlation lengthj(T) from the slope. The correla
tion lengths of the binary and the ternary critical mixture,
calculated according to Eq.~22! vs temperature are shown i
Fig. 2. We were not able to give a single estimate for
uncertainitiesDj of j(T) over the whole range of measure
temperatures. However, we can specify estimates for follo
ing cases: ~i! In the rangeT2Tc@1.5 K, due to the low
scattering intensity, we foundDj'5 nm; ~ii ! if T2Tc
51.5– 0.2 K the higher intensity leads toDj,1 nm; and~iii !
at T2Tc,0.2 K the system became very sensitive to te
perature fluctuations and the uncertainities increase toDj
'10 nm. If we compare our results for the binary and t
nary mixtures@see Fig. 2~a!# we find only slight differences
in the range far from the critical temperature. IfT2Tc be-
comes less than 0.4 K, the difference in both correlat
lengths becomes evident and leads to an apparently stro
curvature of the ternary correlation length. To eliminate t
temperature effect on this curvature a log-log plot of t
correlation length versus the reduced temperature was m
@Fig. 2~b!#.

er

FIG. 3. Temperature dependence of the generalized osmotic
ceptibility CxT for a binary~s! and ternary~d! mixture. ~a! CxT

vs T2Tc
vis , whereTc

vis is the visually obtained critical temperature
~b! A log-log plot of the susceptibility vs the reduced temperatu
The slopes give the values of the critical exponents.
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TABLE I. Results of fitting the temperature dependence of correlations lengths of the binary systemj(T)
to a simple power law and to scaling corrections.

Parameter According to Eq.~23! According to Eq.~26! According to Eq.~25!

j0 0.223 60.016 0.212 60.018 0.121 60.015
j1 0.023 60.008 62.64 669.73
j2 22710.74 631003
j3 11438.02 612759
Tc 302.765 60.003 302.768 60.004 302.781 60.004
n 0.633 60.011 0.641 60.012 0.728 60.126

variance 1.777 1.676 1.683
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From the zero angle limit of Eq.~22! we obtain the gen-
eralized osmotic susceptibilityCxT , the temperature depen
dence of which is presented in Fig. 3~a!. Again the curvature
of the ternary mixture data is stronger than that of the bin
mixture. Figure 3~b! shows that in the ternary case a nonli
earity was found at temperatures lower than 0.1 K above
critical point. Two effects have to be considered in th
case: ~i! The influence of multiple scattering leads
higher intensities and thus to higher values of the susce
bility and ~ii ! the correction for background scattering d
pends on the precision of incident beam measurements
low incident intensities, because of the very intense sca
ing, we reach the limit of incident intensity resolution. T
avoid errors resulting from this nonlinearity, we used on
the linear part of the data set to obtain the critical susce
bility exponentsg andgx .

2. Calculation of the static critical exponents by power laws

Our data were measured very close toTc . Therefore, we
assume that power laws will describe the temperature de
dence of the correlation length

j~T!5j0S T2Tc

Tc
D 2n

~23!

and generalized osmotic susceptibility

CxT~T!5CxT,0S T2Tc

Tc
D 2g

. ~24!

To determine the parameters in Eqs.~23! and ~24! we per-
formed nonlinear least-squares fits applying theVARPRO

code described above. As input we used weightedj(T) and
y

e

ti-

At
r-

i-

n-

CxT
data from the OZD method. The critical amplitude w

considered as a linear parameter, whereasTc and the expo-
nents were treated as nonlinear parameters in the fit.
shown in the first two columns of Table I–IV, we achieve
satifying fits with reasonable results for both propertie
Within their uncertainties the critical exponents for the b
nary mixture show the expected values of the 3D Is
model. In the ternary mixture the exponents of correlat
length and osmotic susceptibility are apparently larger.
multaneously in the ternary mixture, the critical amplitud
of both variables became much smaller than in the bin
ones. This is a numerical effect due to the strong coupl
between the critical exponent and the corresponding am
tude in the power laws.

3. Determination of the static exponents by correction to scalin

There is conjecture that the presence of a third compon
in a critical mixture may not only alter the critical expone
but also influence the correction to scaling. To investig
this behavior in more detail we applied a Wegner expans
to our correlation length dataj(T) and determined the criti-
cal exponentn. The Wegner expansion~11! was rearranged

j~T!5j0e2n1j0j1e0.52n1j0j2e1.02n1j0j3e1.52n

~25!

to suit a nonlinear regression with separable terms, where
amplitudej0 and the Wegner coefficients appear as line
parameters andTc andn as nonlinear ones. The experiment
data were weighted by their respective reciprocal squ
variances obtained from the slope of the OZD method.
study the influence of the third component we applied
same fitting procedure to the data of the binary mixture t
ystem
TABLE II. Results of fitting the temperature dependence of correlations lengths of the ternary s
j(T) to a simple power law and to scaling corrections.

Parameter According to Eq.~23! According to Eq.~26! According to Eq.~25!

j0 0.052 60.012 0.091 60.011 20.012 60.003
j1 0.087 60.017 2553.33 6509.38
j2 15083.33 614843
j3 2135250.32 6154343
Tc 290.771 60.007 290.773 60.007 290.822 60.005
n 0.820 60.037 0.743 60.020 0.758 60.116

variance 2.225 2.209 2.205



2032 PRE 59O. MÜLLER AND J. WINKELMANN
TABLE III. Results of fitting the temperature dependence of the osmotic susceptibilityCxT(T) of the
binary mixture to a simple power law and to scaling corrections.

Parameter According to Eq.~24! According to Eq.~28! According to Eq.~27!

xT0 1.811 60.210 1.852 60.188 1.89 60.19
xT1 0.062 60.021 7.16 66.75
xT2 2221 6223
xT3 493 6452
Tc 302.768 60.004 302.752 60.006 302.742 60.018
g 1.253 60.028 1.252 60.022 1.244 60.107

variance 4.285 4.274 4.171
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In a first step we performed a four-parameter fit, treat
j0 and thej1 as linear parameters andTc andn as nonlinear
ones. The higher coefficients were set to zero

j~T!5j0e2n1j0j1e0.52n. ~26!

For both the binary and ternary mixtures the results of t
procedure are shown in the third and fourth columns
Tables I and II. In both cases correction to scaling leads
small improvements of the fit shown by a decrease in v
ance. In the case of our binary mixture, the introduction
the second term in Eq.~26! leads only to slight changes i
the values of critical exponent and amplitude. Consequen
this first correction term is small. In the ternary mixtur
however, the results show a considerable downward cha
of the critical exponent if we apply a Wegner term as in E
~26!. Here the value of this term becomes more signific
and should not be left out. The critical temperatures de
mined by using Eq.~26! are within the uncertainities of ou
direct measured decomposition temperatures. Fixing
critical exponents to their theoretical values does not lea
significant changes in the values of the free parameters o
the quality of the fit.

To test the influence of the higher-order terms we u
Eq. ~25! performing a six-parameter fit, treatingj0 and thej i
as linear parameters andTc andn as nonlinear ones. For th
binary system we found good agreement inTc and a critical
exponentn that is larger than that from the simple power la
~23!. However, it has a statistical uncertainity considera
larger than the former. For the ternary system the estima
critical temperature increases about 50 mK, which is outs
our direct measurements of the decomposition tempera
The ternary critical exponent decreases to a value ofnx
g
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50.76. However, the critical amplitude of the ternary mi
ture exhibits an unphysical value that leads to a downw
singularity of the first term in Eq.~25!. This behavior com-
pelled us to analyze the various terms in the corrections
scaling under the assumption that approaching the crit
temperature these corrections should tend to zero.

In a first run the critical exponent was kept fixed atnx
50.71. We found a slight decrease in the variance and
sults as shown in Fig. 4. In this diagram we see that
power-law term improves at the expense of the first Weg
term. The overall result~solid line! is in good agreemen
with the experimental data, but the various Wegner ter
differ widely. They describe closely the critical singulari
itself, but not any corrections to scaling. The first and seco
correction terms are rather large, have opposite signs,
seems to compensate for each other, whereas the third
tends towards zero atTc , as expected. The next diagra
~Fig. 5! represents the fitting results when we use the va
of the critical exponentnx50.63, as predicted for the 3D
Ising model. The quality of the representation still improve
The power-law term shows even closer agreement with
measured correlation lengths and the Wegner terms ne
compensate for each other.

To find out whether this procedure converges we de
mined the run with the minimum overall variance. The co
responding critical exponent isnx50.50 and the detailed
representation is given in Fig. 6. Here the power-law term
close to the experimental data and gives a good descrip
of the critical region. The Wegner expansion terms ten
towards zero as we expected and are influenced more if
distance fromTc increases. However, in all cases we shou
keep in mind that the differences in variance are quite sm
and the statistical uncertainities are rather high.
TABLE IV. Results of fitting the temperature dependence of the osmotic susceptibilityCxT(T) of the
ternary system to a simple power law and to scaling corrections.

Parameter According to Eq.~24! According to Eq.~28! According to Eq.~27!

xT0 0.408 60.041 0.373 60.03 0.071 60.014
xT1 0.113 60.02 339.71 6293.54
xT2 2575 6561
xT3 16042 616436
Tc 290.778 60.010 290.772 60.009 290.751 60.009
g 1.542 60.047 1.422 60.051 1.471 60.102

variance 4.812 4.732 4.799



ex
ni
io
b
tr
m
f a
n

os
e

a-

io
in

a
a
th
nt

s.

est
m

m
al
ex-
ple
in
its

he

ent
sion
ith

val-

g
in

es
ults

the
e

e

nor-
is
o-
for

ins

PRE 59 2033COMPARISON OF CRITICAL PROPERTIES IN BINARY . . .
From this detailed analysis we conclude that for our
perimental data a Wegner expansion does not yield sig
cant improvement. We feel that in our case the expans
with nx50.50 gives the best and physically most reasona
representation, but generally it seems preferable to res
ourself to a power-law analysis with only one Wegner ter
Our results illustrate the difficulties in the determination o
critical exponent because the superposition of the Weg
correction terms tends to a certain self-compensation.

A similar analysis was performed for the generalized
motic susceptibilitiesCxT

(T). We intended to calculate th

critical exponentgx from a Wegner expansion with sep
rated correction to scaling terms:

CxT~T!5x0e2g1x0x1e0.52g1x0x2e1.02g1x0x3e1.52g.
~27!

Again we found a slight improvement of the representat
when we included the correction to scaling. As shown
Tables III and IV, the values of the critical exponentsg and
gx for the binary and ternary mixtures decrease. The tern
system shows a susceptibility exponent larger than the bin
one. As in the case of the correlation length, we varied
critical exponent and determined the expansion coefficie
The minimum overall variance was reached atgx51.20, but
the Wegner coefficients had large statistical uncertainitie

FIG. 4. Wegner expansion of the correlation lengthj(T) for the
ternary mixture with a critical exponentnx50.71. Comparison of
experimental data~s! with the full correction to scaling@Eq. ~25!#,
the first ~power law! term @Eq. ~23!#, and the individual Wegner
terms.

FIG. 5. Wegner expansion of the correlation lengthj(T) for the
ternary mixture with a critical exponentnx50.63. The parameter
are the same as in Fig. 4.
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Similar to the case of the correlation lengths, the b
analysis was obtained by restriction to one correction ter

CxT~T!5x0e2g1x0x1e0.52g ~28!

even if the variance of the fit is slightly larger than that fro
Eq. ~27!. In the case of the binary mixture the addition
parameter does not change significantly both the critical
ponent and the critical temperature determined by sim
power laws. The small value of the correction term is
agreement with this result. The exponent shows nearly
theoretical value. If we investigate the ternary mixture t
first-order scaling correction according to Eq.~28! becomes
significant. Consequently, the determined critical expon
tends to decrease. Unlike the higher-order Wegner expan
~27!, in the present case all parameters were obtained w
sufficient precision.

4. Influence of the structure factor exponent

Equation~22! does not consider the singularityh of the
static structure factorS(q). To test the influence ofh the
least-squares fitting procedure was used to determine the
ues of the critical exponentsn, g, andh (nx , gx , andhx for
ternary mixture! and the critical amplitudej0 (j0x) by a
modified Fisher equation@14#

I sc

T
5A0e2g@11q2j0

2e22n#211h/21I B , ~29!

wheree denotes the reduced temperature (T2Tc)/Tc , A0 is
treated as a parameter, andI B is the background scatterin
intensity. Because of the background correction included
I sc, I B was zero. In both binary and ternary critical mixtur
we could not find a significant difference between the res
of the five-parameter fit (A0 , g, n, h, andj0) and the OZD
method with a three-parameter fit to a power law either in
binary or in the ternary mixture. The slight difference in th
exponentsn andg calculated with Eq.~29! ~see Table V! is
within the range of uncertainity. It is interesting that w
found a structure factor exponenthx for ternary mixtures
comparable to the binary one. This does not lead to a re
malization of h. However, the structure factor exponent
very small; it is within the uncertainties of the other exp
nents. We have summarized the results of both methods
the binary mixture in Table V and for the ternary system
Table VI.

FIG. 6. Wegner expansion of the correlation lengthj(T) for the
ternary mixture with a critical exponentnx50.50. The parameters
are the same as in Fig. 4.
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B. Transport properties

1. Determination of the mutual diffusion coefficient

At the same angles and temperatures at which we m
sured the scattered intensity, we obtained the tim
autocorrelation function

G~2!~t !5
1

N (
k51

N

I ~k!I ~k1t!,

k51,...,N correlator channels, ~30!

of the intensity by a multiple-t hardware correlator. After a
symmetric normalization

gs
~2!5

MG~2!~k!2M0Mk

M0Mk
, ~31!

with M05(k51
N I (k) andMk5(k51

N I (k21), we applied the
Discrete algorithm by Provencher@26# to calculate the line-
width G of each signal. Because of the relaxation proces
in both binary and ternary mixtures one can obtain only o
relaxation time. To determine the mutual diffusion coeffi
cient for each temperature a linear plot ofG(q)/q2 vs q2 was
performed. We identify the zero-angle linewidth

D125 lim
q→0

S Gc

q2D
T

~32!

as the mutual diffusion coefficient. The termGc denotes the
critical part of the scattered linewidth calculated byGc5G
2GB , whereGB is the background linewidth according to
Eq. ~19!. Here it was not necessary to measure the abso
scattering intensity, so the diffusion coefficients are the m
precise properties we obtained within this work. The va
ances are less than 1% within a range ofT2Tc.0.1 K. Fig-
ure 7 shows the temperature dependence of the meas
diffusion coefficients in the binary and the ternary mixture
One can see the critical slowing down of the mutual diffu
sion. Both the binary and ternary mixtures show almost
diffusion at the critical temperature. However, our terna
system exhibits a less strong curvature and a much low
diffusion coefficient in the hydrodynamic range. This is re

TABLE VI. Summary of the critical exponents of the ternar
mixture resulting from data analysis using the OZD method~22!
and the modified Fisher equation~29!.

TABLE V. Summary of the critical exponents of the binar
mixture resulting from data analysis using the OZD method~22!
and the modified Fisher equation~29!.
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markable because of the only small difference between
correlation lengths in the binary and the ternary mixture. T
log-log plot of the mutual diffusion coefficients vs the r
duced temperature@lower part of Fig. 7~b!# reveals the influ-
ence of the different critical exponents of the diffusion co
ficient in both mixtures, as one can see from the slop
Especially for the correct calculation of the viscosity exp
nent, it is important to know the temperature range of cr
cality in the binary and ternary mixtures. There is no ex
theoretical criterion to tell us in which temperature range
applied power laws are valid. However, the value of the lin
width exponentz describing theq dependence of the line
width is a suitable practical criterion for this purpose. W
obtain the effective linewidth exponentzeff by estimation of
G5D12q

zeff. Figure 8 shows the growth ofzeff vs the tem-
perature differenceT2Tc . We find an enlargement of th
linewidth exponent fromzeff'2 ~hydrodynamic range! to
higher values in order to reach the critical temperature
both cases. The ternary mixture shows a smaller crit
range.

2. Calculation of the critical diffusion exponent by power laws

Since our measurements were performed very close
Tc , we assumed that the temperature dependence of the
tual diffusion coefficient can be described by a simple pow
law

FIG. 7. Temperature dependence of the mutual diffusion co
ficients D12 for a binary ~s! and ternary~d! mixture. ~a! D12 vs
T2Tc

vis , whereTc
vis is the visually obtained critical temperature.~b!

A log-log plot of the mutual diffusion coefficients vs the reduc
temperature. The straight lines show the approximation to po
laws.
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D125D12,0S T2Tc

Tc
D n*

. ~33!

Like our static data analysis, we used theVARPRO nonlinear
least-squares algorithm to perform a free fit of our binary a
ternary data to this model. The results of this calculation
shown in Tables VII and VIII. Within the statistical unce
tainties the determined critical temperature agrees with
values ofTc found from the analysis of the static properti
by power laws. The critical exponent of the binary diffusio
coefficient shows a slightly smaller value than the theoret
one from the dynamic renormalization theory (n theor*
50.67). The critical diffusion exponent of the ternary mi
ture nx* is apparently larger. This is consistent with an i
creased exponent of the correlation length in the ternary c
Again one can see the strong coupling between the crit
exponent and the critical amplitudeD12,0, which leads to a
smaller value of the amplitude in the case of the tern
mixture.

3. Determination of the diffusion exponent by correction
to scaling

The mutual diffusion coefficient is strongly connected
the hydrodynamic radius of the moving particles. If we a
sume that the third component influences the correction
scaling of the correlation length, we have to investigate
same assumption in the case of diffusion coefficients t

FIG. 8. Plot of the effective linewidth exponentzeff vs the tem-
perature above the critical point for the binary~s! and ternary~d!
mixture.
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Therefore, we tried to calculate the exponentn* of D12(T)
taking into consideration the scaling corrections

D12~T!5D12,0e
2n* 1D12,0D12,1e

0.52n*

1D12,0D12,2e
1.02n* 1D12,0D12,1e

1.52n* . ~34!

The results of this data analysis are shown in Tables VII a
VIII. Similar to the behavior of the static properties, w
found a small decrease of the variance if we included c
rections to scaling according to Eq.~34!. While in the case of
static properties we observed larger changes in the calcul
temperatures, for the diffusion coefficients these differen
are within the uncertainties. The accuracy of the calcula
critical exponents is comparable to that of the results
tained from power-law fitting. We found only small differ
ences between exponents calculated from a power law
those from scaling corrections. Again the exponent of
ternary system is larger than the binary one. Also in the c
of the mutual diffusion coefficient an exact calculation
Wegner coefficients was not possible because of the la
uncertainties. The relatively small changes in all parame
lead to the assumption that the model~27! might be overes-
timated.

To avoid this overestimation we restrict the scaling c
rection even more to one Wegner term

D12~T!5D12,0e
2n* 1D12,0D12,1e

0.52n* . ~35!

Compared to the fit from simple power laws, we yield dow
ward changes of the critical exponents in both the binary
the ternary system. Consequently, the first Wegner terms
of the same order. This leads to the assumption that the
fusion coefficient is influenced by the noncritical part of t
dynamic viscosity in the binary system. Unlike the full sca
ing corrections, the results of this fit are more satisfying b
cause of the smaller uncertainties in the determination of
parameters.

C. Dynamic viscosity

To determine the scaling behavior we measured the fl
times of the mixtures at 104 temperatures in the range fr
20 mK up to 2 K above the critical temperature. To avoid t
influence of background viscosity we also performed m
surements fromT2Tc54 K (zeff'2) up to T2Tc530 K
and used these data to estimate the parameters of the V
equation ~18!, as shown in Table IX. The temperatur
TABLE VII. Results of fitting the temperature dependence of the mutual diffusion coefficientD12(T) of
the binary system to a simple power law and to scaling corrections.

Parameter According to Eq.~33! According to Eq.~35! According to Eq.~34!

D12,0 2747 678 2733 681 1976 661
D12,1 0.042 60.001 0.0022 60.0015
D12,2 20.0312 60.0204
D12,3 0.0644 60.0656
Tc 302.763 60.003 302.771 60.006 302.788 60.01
n* 0.657 60.012 0.638 60.011 0.643 60.016

variance 2.173 2.148 2.151
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TABLE VIII. Results of fitting the temperature dependence of the mutual diffusion coefficientD12(T) of
the ternary system to a simple power law and to scaling corrections.

Parameter According to Eq.~33! According to Eq.~35! According to Eq.~34!

D12,0 1048 646 1087 6111 1117 651
D12,1 0.062 60.013 0.010 60.008
D12,2 20.0699 60.0518
D12,3 0.1940 60.2003
Tc 290.775 60.005 290.778 60.006 290.782 60.008
n* 0.787 60.021 0.751 60.046 0.781 60.14

variance 3.025 2.975 2.982
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dependent flow times from viscosity measurements were
rected by the Hagenbeck formula. We obtained the dyna
viscosities by

h~T!1hB~T!5K@ t~T!2th#r~T! ~36!

using temperature-dependent densities from the vibra
densimeter. The viscosities for the binary and ternary m
tures vs the temperature are shown in Fig. 9. For the tern
mixture the absolute values of the dynamic viscosity are
parently higher. This is in agreement with the lower diff
sion coefficient at similar correlation lengths in this mixtur
However, we did not observe a significant difference in
curvature of both viscosities vs temperature. Taking exp
mental uncertainties into account, the log-log plot, as sho
in Fig. 9~b!, does not yield different slopes. In this conne
tion we note that the use of a vibration densimeter for m
surements in the critical range should be considered w
care. The system is very sensitive to the import of mecha
cal energy that may shift the system away from the n
critical state. The application of a capillary viscosime
leads to shear forces during the measurement that distur
laminar flow process. Because of this our results of the
cosity measurements are the most uncertain ones. To d
mine the viscosity exponentzh we used Eq.~17! with the
values ofj0 andn from our static light scattering measur
ments. Like the structure factor exponent,zh is very small.
Because of this situation we did not perform an analysis
possible scaling corrections. In addition, this should be
necessary because of the viscosity background correctio
Vogel.

VI. SUMMARY

The purpose of this investigation was to study critic
singularities in binary and ternary fluid mixtures, in partic
lar the determination of critical exponents in these syste
Since we performed the same experimental and fitting p

TABLE IX. Critical exponentzh according to Eq.~17! and the
parameters of Eq.~18! by Vogel describing the noncritical part o
the dynamic viscosity.

System zh A ~cP! B ~K! C ~K!

binary 0.04560.021 0.1032 201.358 204.771
ternary 0.05460.028 0.1019 184.359 193.146
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cedures on both mixtures under the same conditions, we
directly compare the behavior of these systems and de
mine changes in their critical properties. We investigated
shift in critical exponents, the validity of power laws, th
influence of the structure factor exponent, and the role
corrections to scaling when we change from a binary criti
mixture to a ternary one. There is a significant differen
between a binary critical point and a ternary plait point. T
plait point is part of a critical line on a coexistence surfac
Therefore, any thermodynamic path approaching the tern
plait point may or may not come close to this critical lin
Thus its shortest distance to the critical line may vary@27#.
Our basic assumption is that this behavior will influence
critical properties. Instead of a single value, this would le
to a sequence of critical exponents, depending on the sho

FIG. 9. Temperature dependence of the critical part of the
namic viscosityh for the binary~s! and ternary~d! system.~a! h
vs T2Tc

vis . ~b! Dynamic viscosity vs the reduced temperature. T
slopes of the straight lines correspond to the critical exponents
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distance to the critical line. The binary exponent should
the limit of this sequence. To study these assumptions
found that more high-precision experimental data on tern
systems are needed and especially data sets over a w
range of temperatures so that the role of scaling correct
could be investigated in more detail.

First we applied simple power laws to describe the te
perature dependence of our experimental data and we
tained good agreement between the calculated critical t
perature and the measured decomposition temperature o
same mixture. In the binary mixture case the critical exp
nentsn, g, and n* show only small differences from th
theoretical values. When we applied the power laws to
ternary mixture data we found critical exponentsnx , gx , and
nx* that are apparently larger than the binary ones.

There is a conjecture that adding a third component t
binary critical mixture may not only alter the critical expo
nent but also change or influence the corrections to sca
This behavior might be interpreted by the hypothesis
shortest distance to the critical line. On a thermodynam
path to a critical plait point the shortest distance to the cr
cal line may change, depending on whether the path is c
to or distant from the critical line. This change in distance
the critical state could lead to a change in the correction
scaling. Therefore, we used the static properties correla
length and generalized osmotic susceptibility to investig
this influence. Generally, the introduction of scaling corre
tions leads to a downward shift of the critical exponents.

From our data analysis we found that the application
several correction terms does not lead to consistent, ph
cally meaningful results. Because of the superposition of
ditional terms, the correction tends to self-compensation.
resulting values of such correction terms become mean
less. Therefore, it is important to choose the order of corr
tion to scaling carefully, that is, in our case only one Weg
term. We observed that the effect of the third componen
represented in two parameters: an enlargement of the cri
exponent and a nonzero first-order correction term. The
follows from the renormalization explained by the mob
electron Ising model. We found no significant differen
from the results of this model if we applied the first-ord
correction. We can conclude that the terna
aniline1cyclohexane1p-xylene system shows no simp
Ising-like behavior in the range of critical singularity. Th
first-order correction term is necessary to describe the t
perature dependence of the measured static properties in
nary systems. Because of the limitation of the 3D Isi
model to only two possible states on each lattice site
result should be expected.
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An exception was found with the viscosity measuremen
The comparison with the theoretical binary exponent sho
that our measured values are too low. Unlike the other d
sets, we could not obtain any significant difference betwe
the viscosity exponentzh in the binary andzh,x in the ternary
mixture with respect to their uncertainties.

It would be interesting to test the estimated critical exp
nents to static scaling laws. If the observed systems
members of an universality class, the equations

~22h!n5g, ~22h!nx5gx ~37!

should hold for binary and ternary systems, respectively.
the experimental exponents of the binary mixture this l
holds, as expected. In the ternary case we found a differe
between the right- and left-hand sides of Eqs.~37!. However,
this difference is smaller than the deviation of the expone
nx andgx . Therefore, we assume that this scaling law ho
for ternary systems too.

The connection between static and dynamic critical ex
nents is given by the scaling laws

n* 5n~11zh!, nx* 5nx~11zh,x!, ~38!

respectively. Since the exponentnx* of mutual diffusion is
smaller than the correlation length exponentnx , this scaling
law does not hold for our ternary mixture.

There is no doubt of the universality in ternary mixtur
in the vicinity of their critical points with respect of thei
static properties. The enlargement of the measured static
ponents does not lead to a violation of the static scaling l
However, for dynamic properties we did not find the sam
behavior.

The results of our measurements show that the additio
a third component to a binary critical system along a criti
line leads to an enlargement of the static and dynamic crit
exponents. Further investigations at various points along
critical line will show whether these values are fixed or fun
tions of the binodal surface slope.
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